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We give a method for obtaining the stability conditions for nonlinear systems, 
based on an analysis of the linearized coupling equations and of the linearized 
or quadratic expressions for the integrals of motion. Liapunov’s method is usu- 

ally employed in the investigation of the stability of dynamic systems. The 
investigation of the Hamiltonian function is a convenient tool for systems with 
internal energy dissipation. In fact, in the development of the Thompson (Lord 
Kelvin)-Tait-Chetaev theorem [ 1 - 41 it was shown that the positive definite- 
ness of the Hamiltonian function provides the necessary and sufficient stability 
conditions in the case of complete dissipation. We have obtained just suffici- 

ent conditions for system with partial dissipation ; moreover, the method does 
not yield the possibility ofobtaining far-reaching inferences on stability on the 
basis of the analysis of the linearized equations. It should be noted also that 
in several cases it is convenient to introduce a number of variables, exceeding 
the number of degrees of freedom, and to examine the couplings. Then the 

equations can be simplified or represented in a form convenient for stability 
analysis. 
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of the Lagrange function of the form 

L = 1/2q’Tf’kf’q’ + q’Tl?q + ‘f2qTK’q 0) 

Here (I is the E-Z X 1 generalized coordinate vector, M’ and K’ are symmetric mat- 

rices. The matrices M’, K’ and r are functions of q which, by definition, are poly- 

nomials. The superscript T denotes transposition. If the system is nonholonomic or is 

described by a larger number of variables than the number of degrees of freedom , we 
introduce the coupling equations. We assume that no work is accomplished on the coup- 
lings and that they are expressed in the form of kinematic relations 

ATdq = 0 (2) 

If n is the number of degrees of freedom, matrix A is of dimension n X (m - n) 

and is a function (a polynomial) of m variables. 
It is well known that under the assumptions made, the equations of motion in a neigh- 

borhood of the equilibrium q = 0 form a system of 2m - n equations 

M’q- + G’q’ + K’q - Ah. = Q’, ATq’ = 0 (3) 

Here G’ = I’ - rT is a skew-symmetric matrix, Q’ is the matrix of generalized for- 

ces, including the dissipation forces, and equals zero when q = 0. Let us show that the 

stability conditions for system (3) in substance coincide with the stability conditions for 

the equivalent linear system with integrable couplings. 
Liapunov’s theorem on stability in the first approximation cannot be applied directly 

for determining the stability of system (3) near the equilibrium position q = 0 because 

the corresponding linear system has zero eigenvalues. In such a case the stability can 

depend upon nonlinear terms. 
A linear holonomic system, equivalent to linearized system (3) can be obtained by 

Whittaker’s method [5]. The integral of the linearized ATq’ = 0 has the form 

ATq =0 (4) 

and q = 0 is the solution. If 

AT = A,B, q = [Z&T 

where A,isan((m-n) X (m- n) )-matrix and 5s is an ( (m - n) X 1 )-vector, 
then the variable 5s can be expressed in terms of z as 

5s = cx, C= - Ao-‘B (5) 

The required system is obtained by replacing x0 by the value given by formula (5) in the 
expressions for the kinetic and potential energies. 

If the matrices M’, G’ and K’ are of the form 

then the corresponding holonomic system is 
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Mx” + Gx’ + Kx = Q (6) 

(M = Mfia + CTM”C + CTMoa + MP”C) 

where Q are the generalized forces coupled with variable x. Expressions analogous to 

those within the parantheses hold also for G and K. It should be noted that we can 
obtain system (6) directly by multiplying the equations of system (3) by CTE, where 

E is the (m - n) X (m - n) unit matrix and by replacing x0 by expression (5). 

With the aid of the Hamiltonian function and of relation (5), considered as an integral 

of motion, we can show that the stability of linearized system (3) is equivalent to the 

stability of the corresponding system (6). 

Liapunov’s theorem on stability in the first approximation is applicable in the case of 
nonlinear systems and of integrable coupling equations with due regard to the linearized 

integral (5). However, the couplings can be unintegrable in the case of a nonholonomic 

system, and merely the boundedness of (3) follows from the asymptotic stability of (6). 

If system (6) has one eigenvalue with a positive real part, then the linear system (3) is 

unstable in all the cases indicated above. 
It is clear that such a procedure can be extended to systems of equations which arenot 

derived directly from the Lagrange function. It is usually simpler to obtain the Euler- 

Liouville equations [6 - 81 in the case of a rotational motion because here we are not 
required to carry out a quadratic approximation for the transformation matrices and for 

the expressions for angular velocities, as is required by the Lagrange method [9]. The sta- 
ted equations are obtained in the form 

T (Mx” + Gx + Kx - Q) = 0 

It is difficult to determine the matrix T in the general case; therefore, we cannot call 

on the Hamiltonian function to make a judgement on the stability of (7). However, we 
can sometimes write a system of variables whose number exceeds the number of degrees 
of freedom and make use of couplings ; this allows us to obtain a system of equations 
directly in the form (6). 

The Hamiltonian function of system (6) is 

H = ii, (X’TMX’ + ZTKZ) 

and in the presence of dissipation its time derivative along a trajectory is H’=x’~Q < 
0 everywhere in the state space. If H is a positive-definite function and if H’ # 0 
along a trajectory (the case of complete dissipation), then the trivial solution is asymp- 
totically stable. On the other hand, if function H can take negative values in theneigh- 
borhood of the origin and if the dissipation is complete, the system is unstable.If H’ 3 
0 along a trajectory in state space, then the positive definiteness of H provides only 
sufficient conditions for stability but not for asymptotic stability. 

The generalized mass matrix Af is always positive and is positive definite for the 
majority of cases considered in problems of the dynamics of rotational motion. In this 
case H is positive definite if matrix K possesses this property. The positive definite- 
ness of li can be verified by the Sylvester conditions ; this yields n stability conditions. 

Some systems do not possess complete dissipation, and an arbitrary choice of initial con- 
ditions can alter certain integrals of motion of the system. For example, a system with 
free rotation, when the initial conditions can change the total angular momentum, is such 
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a system. In the presence of dissipation the system tends to a new equilibrium position. 
If a system has integrals of motion, several methods can be used to settle the question 

of its stability or partial stability when the integrals are satisfied exactly or approximat- 

ely. We do not examine these methods here and propose a simple way of achieving the 
results needed for solving the particular problem being considered. When the integrals 

are satisfied approximately, we can make a judgement only on nonasymptotic stability 
[lo]. Therefore, let us examine systems4or which the integrals are satisfied and inves- 

tigate the system’s stability when the trajectory lies wholly on a hypersurface defined by 

the integrals of motion. Here we also assume that the integrals of motion can be des- 
cribed by polynomials. 

We introduce a new function, being a combination of the Hamiltonian function andof 

the integrals of motion, so that certain variables are eliminated. The new Liapunov func- 
tion is expressed in terms of the remaining variables x’. Its time derivative under initial 

conditions satisfying the integrals of motion equals A’, and the dissipation now can be 
complete. The positive definiteness of the polynomial relative to the zero value is de- 

termined by the quadratic terms; therefore, the system is asymptotically stable with re- 
spect to a part of the variables (m variables x’) if the new function T/ L’TK’~’ is 

positive definite. This leads to a system of m stability conditions. For many problems 
it can be shown that asymptotic stability follows from this stability with respect to a part 

of variables s’. 
Stability of the regular precession of a heavy gyroscope moun- 

ted on gimbals. The exact solution of the problem for the case of the gyro rota- 

tion around a vertical axis of the outer gimbal was given by Magnus [ll]; The stability 
conditions for all equilibrium positions were given by Rumiantsev l-121 (see also [13]for 
the results). We take the inertia of the outer gimbal into account and we reckon that the 
dissipation is caused by the inner gimbal. The outer gimbal rotation axis is vertical. 

The center of mass of the system consisting of the gyro and the inner gimbal is located 
on the gyro axis of symmetry. The center of mass of the outer gimbal coincides with the 

point 0 of intersection of the rotation axes of both gimbals. 

We introduce the body coordinate systems 0X1*X,*X,* and O.Z,*X.~*~,*. for the 
housing and for the gyro, respectively. The outer gimbal rotation axis is directed along 

the X3*. the inner gimbal - along x1* , and the gyro symmetry axis - along J’s*. 
Afterthesystem 0X1*X,*X,* rotates around the axis X,* by an angle (p the axes 

X,* coincide with the axes of the outer gimbal ; analogously, the axes of the outer gim- 

bal coincide with the axes x,* after a rotation by angle 0 around the axis Xr* (or 

x1*). We denote by I#,’ the angular velocity of the gyro relative to the inner gimbal. 
The position of the center of mass relative to point 0 is determined by a vector of 

length d directed along the axis x3*, 
We introduce the dimensionless parameters 

.J:! -f- I - J:r 
Ii, -= J, , Ii5 -x 

J:! - J:, 

JI 

Here I is the gyro moment of inertia relative to its symmetry axis. <I, arc the gyro moments 
ofinertia relative to axes .2.,*, 11 is the moment of inertia of the outer gimbal relative 
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to its rotation axis, m is the mass of the gyro, g is the gravitational acceleration. 
The equations of motion are of the form 

+ k, $,‘@’ sin 0 - k, sin 0 = 0 

-+ k,$’ c,os 01 = 0 

:=: L 

(8) 

Here L is the force moment of the inner rotation around the gyro axis. We assume that 
this moment equals zero for some values of 9’. The system has several equilibrium po- 
sitions ; but here we examine only the case of regular precession when 

(j = o,, Q’ = @a’, $’ = q,,‘, 8’ == CD,” = @,” = 0 

In this case, allowing that 8, # 0 for a regular precession, from the first equation in 
(8) we obtain 

- k,cD,‘* cos 8, + kg&’ 0”’ - k, = 0 (9) 

For the perturbed motion relative to equilibrium, determined by (9) we introduce the 

variables 21, x2, 1s such that 

0 = 0, + X1. 0’ C x1 

@. = @a’ + xs’, 9,’ = 9”’ -t 5s’ 

If dissipation is connected with the axis of the inner gimbal (c’ is the dissipation fac- 
tor) and if the quantity L has been linearized, L / 1 = - c+’ - k$, then the equa- 
tions of motion have a form analogous to (6), i.e. 

Here 
Mx” + Gx’ + Kx = - Dx’, 5 = - (Xl, x2, x,lT 

D = diag (c’, 0, c), K = diag (k,cp,‘z sin El,, 0, k) 

1 0 0 0 g12 R1o 

Al= 0 k3--k5cos2~~ k,coS0, , G= -gg,2 0 0 

0 k‘1 cos 8” kl - gl3 0 0 

gl, = - 2k50,.,‘sin 0, cos 8, $~ k,$,,,' sin 8, 

g,, = k,@,,’ sin 8, 

Then the Hamiltonian function’s quadratic form is 

(10) 

2H = x'2 _'_ k 1 i ( 3 - k5 cos*8,) x2’* -$- k,xc,‘” + 2k, cos 0,x,‘x3’ + (11) 

k50,,;’ sin28,.ri2 + kx,’ 

H = - c’x1’2 - cxg’* 

It silould be noted that dissipation cannot be connected with the variable cp because 
regular precession can be absent in this case. 

The system has at least one integral of motion, which follows from the first equation 
in (8). This integral corresponds to the component of angular momentum relative toaxis 
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xa* (the moment of external forces relative to this axis are assumed absent). In linear- 
ized form the integral mentioned has the form 

With the aid of (11) and (12) we can construct a function 1’ which is quadratic in x1, 
z a, 2,’ and a’s’. For initial conditions satisfying (12), the dissipation is complete. The 

positive definiteness of Ti is a necessary and sufficient stability condition for system (10) 
and we can then obtain the stability condition for the regular precession (excepting for 

the critical cases). Simple conditions in closed form can be obtained in the limiting 

cases when k and c equal zero or infinity. In the first case the dissipation is compen- 
sated by the gyro drive ; then the system has a second integral of motion whose linear- 
ized form is written as 

li,Xa’ -t kr12* CO!, 8,, - k,4),,' sin BOX, = 0 (13) 

The dissipation is complete and. from (12) and (13), allowing for (11). we construct a 
function v’, quadratic in ~1 and xr’, in the form 

The time derivative of this function equals - c’.r,“l. 

System (10) with integrals of motion (12) and (13) is asymptotically stable if 

This condition is usually satisfied for real systems since k, > 0 and k, > k,. 
On the basis of the results in [lo) we see that condition (14) is sufficient for the stabi- 

lity of system (10) also when equalities (12) and (13) are satisfied approximately. 
It should be noted that the existence condition for a regular precession must be satis- 

fied. This follows from (9) in the form 

This condition is always satisfied for high values of the gyro rotation velocity. Condition 

(14) can be obtained also by examining the nonlinear system and the positive definite- 

ness of the Routh function or by examining a linear combination of the integrals of mo- 
*Jon. It can be verified that function IJ-’ equals the doubled sum of the quadratic terms 
of the Routh function obtained in l-121. Therefore, the necessary stability condition is 
obtained by a direct application of the results of the paper cited. The sufficient condi- 

tion, proposed in [12], is equivalent to k4 > 0. It is clear that this condition is sufficient 

for the fulfillment of (14). 
Stability of a system of freely-rotating intercoupled rigid bo- 

dies. We assume that the system indicated rotates at a constant angular velocity w0 

around axis Xa* .Fcr each element of the system the Euler equations are written in the 

body coordinate system. If one of the bodies is taken as the reference origin, the total 
number of variables (the angular deformations in the joints of the bodies and the angular 
velocity of the body taken as the reference origin) equals the number of degrees of free- 
dom. Then the equations are written in form (7) and, consequently, can be written in the 
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more convenient form (6). As was proposed in [14], it proves to be convenient to write 
the Euler equation in some “mean” coordinate system. Then it is necessary to introduce 
three additional variables and to use three coupling equations. These equations must be 
chosen so that 

s [z* X u,] cEm = 0 

Here X* is the radius-vector of the element of mass dm in the undeformed system, ~1~ 

is the displacement vector of dm. 
We introduce a vector describing the state of the system 

Jz = (0, PK 8 = (01, 02, %Y 

Here 6,, 8,, 8, are the angles describing the orientation of the coordinate system, fi 
is the vector describing the internal deformation. It can be shown [ 153 that the equa - 
tions of motion are written in form (6) where 

I 0 II 1 
I O-J1 

-11 = o * ) 
I = ;; Iz2 - J2 

d - J1 -J, I,, 

In these relations I is the system’s inertia matrix. The matrices Md, &, A, are func- 
tions of a number of parameters. It is clear that this system is not asymptotically stable 
because K is not positive definite. In addition, the dissipation is not complete. 

The kinetic moment is constant and is directed along the axis X3*. Therefore, its 
components along the axes normal to axis X3* must remain zero ; in addition, the 
magnitude of this vector must remain constant and equal to H,, = (I,, $- Ja) CO,,. 

In the body coordinate system the components of H have the form 

HI = I,,& 
. -. 

- .t lo3 - GII% + UITB 
H, = I&,’ - J&I, + woIzzO, + y,A,TP 

H, = H, - J,e; - J,e,’ + I,,fl,’ + q,JzQ2 - ooJ,O, + cooAsTfJ 

Then the coupling equations are 

HI + BzH, = 0, H, - t&H, = 0, H, - H, = 0 
or 

10’ + BTO + ATP == 0, AT 7-y [AITAzTABTjT 

1x3 - 111 + J:, 0 
BT z q - (Is3 -‘I22 ~- Js) 0 0 

- J, Jl 0 

ESy introducing the vector Y --= (8, fi, p’} , we can obtain the function 

$” .~: ‘/,yTK’y 
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by adding the term - 1!,B’TIl-18’ to the ~amiltonian function. Matrix k” must be 
positive definite for asymptotic stability. Matrix iy’ is not positive deflnite if 8, is an 

ignorable coordinate. Nevertheless, it is positive definite in the other variables, which 

yields asymptotic stability with respect to a part of the variables, 
For a nongyroscopic system J, -:. 0 and the matrix K’ takes the form 

K’ ==: (15) 

The function V’ is positive definite in the variables et, es, 6, fi’. In the case given, 
the dissipation is complete ; therefore, the system is asymptotically stabfe in these vari- 
ables. It was implied above that I,, > laE, Ia3 > Iit, and that the system must ro- 
tate around the axis of maximum moment of inertia. In this problem the choice of the 

transverse axes is arbitrary ; therefore, obviously, stability is independent of /,, and I,,. 
The other stability conditions will depend on the system’s deformation and will be deter- 

mined by the rigidity of the joints. 
Sometimes it is necessary to increase the system’s “gyroscopic rigidity” by the intro- 

duction of an internal rotation. Such a system will include gyros. If these gyros them- 

selves are not subject to deformation and if Jr 2: J, -= 0, then the system must rotate, 

as before, around the principal axis. In this case matrix K’ is analogous to matrix (15) 

wherein the quantity Ia3 is replaced by I,, + f,. The stability conditions correspond- 

ing to the rigid motion now take the form 

(I,, -t- J,) (1,s -I- J, - 122) > 0, (I,, m: Js) (I,, / J, -/I,) ;, 0 

These conditions are necessary and can be obtained for particular models [16]. 
It should be noted that the arguments presented above are valid for any freely-rotating 

deformable system and, therefore, are valid for systems of arbitrarily coupled rigid bodies. 
The corresponding matrices now cannot be obtained by the method in [7] in its usual 
form because the presence of “loops” in the system configuration leads to the presence 

of couplings between the variables. Nevertheless, the general approach proposed in the 

given paper remains valid. 
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Bifurcation theory for stationary motions was developed by Poincare’ [l] and 
Chetaev [2] for Lagrangian conservative mechanical systems. This theory is 
based on the investigation of the (transformed) potential energy of the system 

pi = 1’ (c, ql, . . ., qm), where qll . . ., q,,, are the Lagrange coordinatesand 
c is a parameter. For three problems in solid body dynamics we have shown 
below that this theory is applicable for the investigation of systems with known 

first integrals (1 (x1, . . ., 211) =- c, CT, (z-1, . . . , m) = Cl, . . . ) 

uk (11, . . ., r,) = Ck (k + 1 < n) 

As in the classical case, here we can introduce the function 


